

0040-4039(94)01541-4

Synthesis of (±) 1,2-Dideoxy-1,2-Diamino-myo-Inositol.

Philippe Guédat, Bernard Spiess and Gilbert Schlewer*;

Laboratoire de Pharmacochimie Moléculaire du CNRS, Faculté de Pharmacie, Université Louis Pasteur, 74 route du Rhin, 67401 Ilikirch, France.

Abstract: Starting from myo-inositol, an isostere, diaminated in positions 1 and 2, was prepared. The key step of the synthesis was the simultaneous inversion of the dimesylate 6 with sodium azide leading to the global retention of the configuration.

Myo-inositol 1 is the starting link of the inositol-phosphate cycle, and a large number of inositol derivatives are now well recognized for their biological properties 1-4.

Therapeutical effects could be modulated through modifications of the *myo*inositol moiety. These structure-activity relationships may concern, modifications on the positions directly involved in the phosphorylation processes such as in the position 1, during the formation of phosphatidyl inositol⁵. other modifications concern the hydroxyl groups which seem implicated in the recognition of the phosphorylation or dephosphorylation active sites such as the position 2 for the 1inositol monophosphatase^{6,7}.

We were particularly interested in the synthesis of bioisosteres of myo-inositol and here we report the synthesis of an analogue 2 where the hydroxyl groups in positions 1 and 2 were replaced by primary amines.

The starting material for this synthesis was *myo*-inositol 1. Treatement of 1 with 2.2-dimethoxypropane in DMSO in the presence of a catalytic amount of *p*-TSOH gave transitorily three racemic di-O-isopropylidene derivatives⁸. The 2.2-dimethoxypropane was completely evaporated : then, the same amount of the starting *myo*-inositol was added into the crude mixture inducing a transacetalysation which selectively deprotects the *trans* fused acetals of the inositol nucleus. This resulted in the exclusive formation of the monoisopropylidene **3** with an overall yield of 55%⁸. The four hydroxy groups were then benzylated by treatement of the corresponding alcoolate, formed by means of NaH, with benzyl bromide⁹ yielding the totally protected inositol **4**. The 1.2-*cis*-isopropylidene protective group was hydrolyzed by treatement with HCl⁹ to give the diol **5** which was transformed to the corresponding dimesylate¹⁰ **6** with a 90% yield.

The next step was the key reaction of this synthesis. Thus, the simultaneous inversion at the positions 1 and 2 by substitution of the mesylates, by means of sodium azide¹⁰, lead to the dideoxy diazide¹¹ **7** resulting on the overall retention of the *myo*-inositol configuration. This is due to the particular geometry of the *myo*-inositol. Thus, after substitution, the position 1 was inverted from an equatorial orientation to an axial one, hence this position turned into the new position 2; and the position 2 was inverted from an axial orientation to an equatorial one, and became the new position 1. Hydrogenolysis at 5 atm using Pd/C as catalysator¹² allowed the simultaneous reduction of the azides into amines and deprotection of the benzyl ethers to give the title compound¹³ **2**. To characterize the final product it was converted to its hexaacetyl-derivative¹⁴ **8**, and it was submitted to a FAB mass spectrometric analysis¹⁵.

This diamino-isostere could be a potential competitor for *myo*-inositol in the inositol- phosphates cycle. It would be interesting to attempt the cellular biosynthesis of the the diamino cyclitol by phosphatidylinositol synthase into modified phosphoinositides, as well as its membrane permeability.

References and Notes

- (1) Berridge, M. J.; Irvine, R. F. Nature 1984, 312, 315-321.
- (2) Downes, C. P.; Macphee, C. H. Eur. J. Biochem. 1990, 193, 1-18.
- (3) Shamsuddin, A. M.; Sakamoto, K. Cancer Chemoprevention, 1992, 285-308.
- (4) Baxter, M. A. Trends Endocrinol. Metab., 1991, 2, 187-190.
- (5) Berridge, M. J. JAMA 1989, 262, 1834-1841.

- (6) Baker, R.; Kulagowski, J. J.; Billington, D. C.; Leeson, P. D.; Lennon, I. C.; Liverton, N. J. Chem. Soc., Chem. Commun., **1989**, 1383-1385.
- Parthasarathy, L.; Vadnal, R.E.; Parthasarathy, R.; Devi, C.S.S. Life Sciences, 1994, 54, 1127-1142.
- (8) Gigg, R.; Warren, C. D. J. Chem. Soc., 1969, 2367-2371.
- (9) Gigg, J.; Gigg, R.; Payne, S.; Conant, R. Carbohydr. Res., 1985, 142, 132-134.
- (10) Ogawa, S.; Isaka, A. Carbohydr. Res., 1991, 210, 105-123.
- (11) For the assignment of the NMR signals a bidimensional COSY 90 experiment has been used. ¹H-RMN (CDCl₃): 7.4-7.2(m, 20H, -(CH₂-C₆H₅)₄), 5.0-4.7(m, 8H, -(CH₂C₆H₅)₄), 3.98(t, J=3.3, 1H, H-2) 3.88(d, J=9.5, 1H, H-6), 3.79(d, J=9.5, 1H, H-4), 3.56(dd, J=9.5 and J=3.2 1H, H-1) 3.47(t, J=9.3, 1H, H-5), 3.37(dd, J=10.0 and J=3.2, 1H, H-3). IR (CH₃Cl): 2103 cm⁻¹ (N₃).
- Kozikowski, A. P.; Fauq, A. H.; Wilcox, R. A.; Challiss, R. A. J.; Nahorski, S. R. J. Med. Chem., 1994, 37, 868-872.
- (13) ¹H-RMN (D_2O): 3.80(t, J=9.5, 1H), 3.62(t, J=10.6, 1H), 3.5-3.1(m, 4H).
- (14) Desai, T.; Gigg, J.; Gigg, R.; Payne, S.; Penades, S.; Rogers, H. J. Carbohydr. Res., 1991, 216, 197-209.
- (15) Mass Spectrum: m/z (FAB+) 431 (MH+, 62%), 371 (11), 313 (11), 182 (23), 149 (100).

(Received in France 4 July 1994; accepted 9 August 1994)